EN FR
EN FR


Project Team Parietal


Application Domains
Contracts and Grants with Industry
Bibliography


Project Team Parietal


Application Domains
Contracts and Grants with Industry
Bibliography


Section: New Results

A supervised clustering approach for fMRI-based inference of brain states

We propose a method that combines signals from many brain regions observed in functional Magnetic Resonance Imaging (fMRI) to predict the subject's behavior during a scanning session. Such predictions suffer from the huge number of brain regions sampled on the voxel grid of standard fMRI data sets: the curse of dimensionality. Dimensionality reduction is thus needed, but it is often performed using a univariate feature selection procedure, that handles neither the spatial structure of the images, nor the multivariate nature of the signal. By introducing a hierarchical clustering of the brain volume that incorporates connectivity constraints, we reduce the span of the possible spatial configurations to a single tree of nested regions tailored to the signal. We then prune the tree in a supervised setting, hence the name supervised clustering, in order to extract a parcellation (division of the volume) such that parcel-based signal averages best predict the target information. Dimensionality reduction is thus achieved by feature agglomeration, and the constructed features now provide a multi-scale representation of the signal. Comparisons with reference methods on both simulated and real data show that our approach yields higher prediction accuracy than standard voxel-based approaches. Moreover, the method infers an explicit weighting of the regions involved in the regression or classification task. See also [14] and Fig. 1 .

Figure 1. Results for prediction of object size. Maps of weights found by supervised cut in the prediction of the size of an object. The proposed algorithm creates very interpretable clusters, compared to the reference methods that do not consider the spatial structure of the image.
IMG/inter_sizes_sc_brr.png